skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wong, Tony_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Computational thinking is crucial for STEM researchers and practitioners, as it involves more than just developing skills—it is a way of thinking that enables effective problem-solving. STEM disciplines approach different problems and as such employ computational thinking uniquely, so students cannot rely solely on computer science to develop computational thinking. Less attention has been given to social aspects of computation, such as collaborating and communicating with and about computation even though social aspects are essential to problem solving. We utilized computational literacy as an alternative framework that explicitly includes social elements as a primary pillar. We conducted 15 interviews with STEM researchers to identify and organize the social aspects that play a role in their research. We organized goals by motivation (persuasion and productivity) and representation (visual and non-visual) to contextualize the use of communication in computation. We found that researchers use computation to explain research results, navigate decision making, establish rigor, ensure reproducibility, facilitate lab stability, and promote research efficiency. We used Activity Theory to describe the tools, norms, and communities associated with these goals to offer a more detailed framework for the social pillar of computational literacy within the context of science and engineering. Examples from each discipline within STEM are described. This social computational literacy framework can act as a guide for STEM educators and practitioners alike to use and teach social aspects of computation. 
    more » « less